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Abstract. We analyze a simple opinion formation model consisting of two parties, A and B, and a group
I , of undecided agents. We assume that the supporters of parties A and B do not interact among them,
but only interact through the group I , and that there is a nonzero probability of a spontaneous change
of opinion (A � I , B � I). From the master equation, and via van Kampen’s Ω-expansion approach,
we have obtained the “macroscopic” evolution equation, as well as the Fokker-Planck equation governing
the fluctuations around the deterministic behavior. Within the same approach, we have also obtained
information about the typical relaxation behavior of small perturbations.

PACS. 05.45.-a Nonlinear dynamics and chaos – 05.40.Ca Noise – 82.40.Ck Pattern formation in reactions
with diffusion, flow and heat transfer

1 Introduction

The last few years have witnessed a growing inter-
est among theoretical physicists in complex phenom-
ena in fields departing from the classical mainstream of
physics research. In particular, the application of statis-
tical physics methods to social phenomena has been dis-
cussed in several reviews [1–5]. Among these sociological
problems, one that has attracted much attention was the
building (or the lack) of consensus. There are many dif-
ferent models that simulate and analyze the dynamics of
such processes in opinion formation, cultural dynamics,
etc. [5–21]. Even though in general the models studied in
those works are simple ones, most of the results have been
obtained via simulations. However, it is extremely relevant
to have some form of analytical insight.

In this work we analyze a simple opinion formation
model, analogous to the one studied in [22] consisting of
two parties, A and B, and an “intermediate” group I,
that we call undecided agents. It is worth to note that
these three groups are not in the same step. We consider
that members of groups A and B have well established po-
sitions about a given subject (i.e. European constitution)
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and I constitutes a group of undecided agents that would
probably be converted to one of the dominant positions.
As in [22], we assume that the supporters of parties A and
B do not interact among them, but only through their in-
teraction with the group I, convincing one of its members
using a Sznajd-like rule similarly to what was discussed in
[10,11], that is within a mean-field treatment. However,
we don’t consider that members of I can convince those
of A or B, mainly because they do not have a definite
opinion, but instead we assume that there is a nonzero
probability of a spontaneous change of opinion from I to
the other two parties and viceversa I � A and I � B.
We will see that this probability of spontaneous change
of opinion (implying the existence of a social temperature
[2,23,24]) inhibits the possibility of reaching a consensus.
Instead of consensus, we find that each party has some sta-
tistical density of supporters, and there is also a statistical
stationary number of undecided (I) agents.

Our aim is to write a master equation for this
toy model, and study its behavior via van Kampen’s
Ω-expansion approach [25]. After determining if, in this
case, the conditions for the validity of using such an ap-
proach are fulfilled, and exploiting it, we could obtain the
macroscopic evolution equations for the density of sup-
porters of A and B parties, as well as the Fokker-Planck
equation governing the fluctuations around such determin-
istic or macroscopic behavior. The same approach also
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offers information about the typical relaxation behavior
of small perturbations around the stationary macroscopic
solutions.

The outline of the paper is the following. In the next
section we present the model, and apply van Kampen’s
Ω-expansion approach in order to obtain the macroscopic
equation and the Fokker-Planck equation governing the
fluctuations around the macroscopic behavior. In Section
3 we analyze the behavior of the fluctuations through the
study of their mean values and correlations, and discuss
the relaxation time of small perturbations. In Section 4
we present some typical results and finally, in Section 5,
some general conclusions are summarized.

2 The model and the approach

2.1 Description of the model

We consider a system composed of three different groups
of agents

� supporters of the A party, indicated by NA;
� supporters of the B party, indicated by NB;
� undecided ones, indicated by NI .

As indicated in the introduction, the interactions we are
going to consider are only between A and I, and B and
I. That means that we do not consider direct interactions
among A and B. The different contributions that we in-
clude are

• spontaneous transitions A → I, occurring with a rate
α1 NA;

• spontaneous transitions I → A, occurring with a rate
α2 NI ;

• spontaneous transitions B → I, occurring with a rate
α3 NB;

• spontaneous transitions I → B, occurring with a rate
α4 NI ;

• convincing rule A + I → 2 A, occurring with rate
β1
N NANI ;

• convincing rule B + I → 2 B, occurring with rate
β2
N NBNI .

As indicated above, here Ni is the number of agents sup-
porting the party or group “i” (with i = A, B, I). We have
the constraint NA + NB + NI = N , where N is the total
number of agents. Such a constraint implies that, for fixed
N , there are only two independent variables NA and NB.
By using this constraint, the rates indicated above associ-
ated to processes involving NI , could be written replacing
NI = (N − NA − NB).

With the above indicated interactions and rates, the
master equation for the probability P (NA, NB, t) of hav-
ing populations NA and NB at time t (due we have had
populations N0

A and N0
B at an initial time t0 < t), may be

written as

∂

∂ t
P (NA, NB, t) = α1(NA + 1)P (NA + 1, NB, t)

+α3(NB + 1)P (NA, NB + 1, t)
+α2(N − NA − NB + 1)P (NA − 1, NB, t)
+α4(N − NA − NB + 1)P (NA, NB − 1, t)

+
β1

N
(NA − 1)(N − NA − NB + 1)P (NA − 1, NB, t)

+
β2

N
(NB − 1)(N − NA − NB + 1)P (NA, NB − 1, t)

−
[
α1NA + α3NB + α2(N − NA − NB)

+α4(N − NA − NB + 1)
]
P (NA, NB, t). (1)

This is the model master equation to which we will apply
van Kampen’s approach [25].

2.2 Van Kampen’s expansion

In order to apply van Kampen’s approach, as discussed
in [25], we identify the large parameter Ω with N (assum-
ing N � 1); and define the following separation of the Ni’s
into a macroscopic part of size N , and a fluctuational part
of size N

1
2 ,

NA = NΨA(t) + N
1
2 ξA(t)

NB = NΨB(t) + N
1
2 ξB(t), (2)

and define a “reference” density ρ = N
Ω , that in our case

results ρ = 1. We also define the “step operators”

E
1
i f(Ni) = f(Ni + 1)

E
−1
i f(Ni) = f(Ni − 1),

with f(Ni) an arbitrary function. Using the forms indi-
cated in equations (2), in the limit of N � 1, the step
operators adopt the differential form [25]

E
±1
i = 1 ±

(
1
N

) 1
2 ∂

∂ ξi
+

1
2

(
1
N

)
∂2

∂ ξ2
i

± . . . , (3)

with i = A, B. Transforming from the original variables
(NA, NB) to the new ones (ξA, ξB), we have the relations

P (NA, NB, t) → Π(ξA, ξB, t) (4)

N
1
2

∂

∂ Ni
P (NA, NB, t) =

∂

∂ ξi
Π(ξA, ξB, t). (5)

Putting everything together, and considering contribu-
tions up to order N

1
2 , yields the following two coupled

differential equations for the macroscopic behavior

d

dt
ΨA(t) = −α1ΨA +

[
α2 + β1ΨA

](
ρ − ΨA − ΨB

)
(6)

d

dt
ΨB(t) = −α3ΨB +

[
α4 + β2ΨB

](
ρ − ΨA − ΨB

)
. (7)
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It can be proved that the last set of equations has a unique
(physically sound) stationary solution, i.e. a unique attrac-
tor

ΨA(t → ∞) = Ψst
A

ΨB(t → ∞) = Ψst
B .

This is the main condition to validate the application of
van Kampen’s Ω-expansion approach [25].

The following order, that is N0, yields the Fokker-
Planck equation (FPE) governing the fluctuations around
the macroscopic behavior. It is given by

∂

∂ t
Π(ξA, ξB, t) =

∂

∂ξA

[
(α1ξA + (α2 + β1ΨA)(ξA + ξB)

− β1ξA(ρ − ΨA − ΨB)) Π(ξA, ξB , t)
]

+
∂

∂ξB

[
(α3ξB + (α4 + β2ΨB)(ξA + ξB)

− β2ξB(ρ − ΨA − ΨB)) Π(ξA, ξB , t)
]

+
1
2

[
α1ΨA + (α2 + β1ΨA)(ρ − ΨA

− ΨB)
] ∂2

∂ξ2
A

Π(ξA, ξB, t)

+
1
2

[
α3ΨB + (α4 + β2ΨB)(ρ − ΨA

− ΨB)
] ∂2

∂ξ2
B

Π(ξA, ξB, t). (8)

As is well known for this approach [25], the solution of
this FPE will have a Gaussian form determined by the
first and second moments of the fluctuations. Hence, in
the next section we analyze the equations governing those
quantities.

An obvious, and relevant, question is the one related
with the conditions under which the previously indicated
scheme would agree with simulations based on individuals.
For example in [24] it was discussed that the agreement
between a “mean-field-like” approximation and Monte
Carlo, agent-based, simulations, happened in small-world
networks with a high degree of rewiring. Hence, we could
expect that an agreement between the results of the
present scheme and those of agent based simulations will
occur in highly connected networks.

3 Behavior of fluctuations

From the FPE indicated above (Eq. (8)), it is possible to
obtain equations for the mean value of the fluctuations as
well as for the correlations of those fluctuations. For the
fluctuations, 〈ξA(t)〉 = ηA and 〈ξB(t)〉 = ηB , we have

d

dt
ηA(t) = −

[
α1 + α2 + β1(2ΨA + ΨB) − β1ρ

]
ηA

− (α2 + β1ΨA)ηB (9)
d

dt
ηB(t) = −

[
α3 + α4 + β2(ΨA + 2ΨB) − β2ρ

]
ηB

− (α4 + β2ΨB)ηA. (10)

Calling σA = 〈ξA(t)2〉, σB = 〈ξB(t)2〉, and σAB =
〈ξA(t)ξB(t)〉, we obtain for the correlation of fluctuations

d

dt
σA(t) = − 2α1σA − 2[α2 + β1ΨA][σA + σAB ]

+ 2β1σA[ρ − ΨA − ΨB]
+ [α1ΨA + (α2 + β1ΨA)(ρ − ΨA − ΨB)], (11)

d

dt
σB(t) = −2α3σB − 2[α4 + β2ΨB][σAB + σB ]

+ 2β2σB[ρ − ΨA − ΨB]
+ [α3ΨB + (α4 + β2ΨB)(ρ − ΨA − ΨB)], (12)

d

dt
σAB(t) = −[α1 + α3]σAB − [α2 + β1ΨA][σAB + σB]

− [α4 + β2ΨB][σA + σAB ]
+ [ρ − ΨA − ΨB][β1 + β2]σAB. (13)

3.1 Reference state: symmetric case

Here we particularize the above indicated equations to the
symmetrical case, i.e. the case when Ψst

A = Ψst
B . Hence, we

adopt
α1 = α3 = α, α2 = α4 = α′,

and
β1 = β2 = β.

In such a case, the macroscopic equations (6) and (7) take
the form

d

dt
ΨA(t) = −[α+α′ − β]ΨA − βΨ2

A − βΨAΨB − α′ΨB +α′

(14)
d

dt
ΨB(t) = −[α+α′ − β]ΨB − βΨ2

B − βΨAΨB − α′ΨA+α′.

(15)

In order to make more explicit the solution of these equa-
tions, we work with the auxiliary variables Σ = ΨA + ΨB

and ∆ = ΨA −ΨB, and use ρ = 1. The last equations now
transform into

d

dt
Σ(t) = −

[
α + 2α′ − β

]
Σ − βΣ2 + 2α′ (16)

d

dt
∆(t) = −

[
α − β

]
∆ − β∆Σ. (17)

In the long time limit, t → ∞, we found on one hand

∆st = 0,

implying Ψst
A = Ψst

B , while on the other hand

0 = β Σ2 +
[
α + 2α′ − β

]
Σ − 2α′.

This polynomial has two roots, but only one is physically
sound, namely

Σst =
α + 2α′ − β

2β

(
−1 +

√
1 +

8α′β
[α + 2α′ − β]2

)
, (18)
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yielding Ψst
A = Ψst

B = Ψst
0 = 1

2Σst.
In a similar way, we can also simplify the equations for

ηA and ηB, calling S(t) = ηA + ηB and D(t) = ηA − ηB.
The corresponding equations are then rewritten as

d

dt
S(t) = −

[
α + 2α′ + 2β(ΨA + ΨB) − β

]
S (19)

d

dt
D(t) = −

[
α + β(ΨA + ΨB) − β

]
D − β

[
ΨA − ΨB

]
S,

(20)

while for the correlation of the fluctuations we have

d

dt
σA(t) = −2ασA − 2[α′ + βΨA][σA + σAB ]

+2β[1 − ΨA − ΨB]σA

+[αΨA + (α′ + βΨA)(1 − ΨA − ΨB)] , (21)
d

dt
σB(t) = −2ασB − 2[α′ + βΨB][σAB + σB ]

+2β[1 − ΨA − ΨB]σB

+ [αΨB + (α′ + βΨB)(1−ΨA − ΨB)] , (22)
d

dt
σAB(t) = −2ασAB − [α′ + βΨA][σAB + σB]

−[α′ + βΨB][σAB + σA]
+2β[1 − ΨA − ΨB]σAB. (23)

Equations (19) and (20) show that, in the asymptotic
limit, i.e. for t → ∞, both, S = 0 and D = 0, implying that
ηst

A = ηst
B = 0. However, also in the general (non symmet-

ric) case we expect to find ηst
A = ηst

B = 0. In addition, from
equations (21), (22) and (23), it is clear that in general we
obtain, again for t → ∞, that σst

i �= 0 (i = A, B, AB).
As we have seen, in the symmetric case we have Ψst

A =
Ψst

B = Ψst
0 , hence it is clear that σA(t) and σB(t) behave

in a similar way. And in particular σst
A = σst

B = σst
0 . In

order to analyze the typical time for return to the station-
ary situation under small perturbations, we assume small
perturbations of the form σst

i ≈ σst
0 + δσi(t) (i = A, B)

and σst
AB ≈ σst

AB,0 + δσi(t), and fix Ψst
A = Ψst

B = Ψst
0 .

We find again that both δσA(t) and δσB(t) behave in
the same way, and this help us to reduce the number of
equations for the decay of correlations. Hence, we can put
δσA(t) = δσB(t) = δσ0(t). The system driving the corre-
lations becomes

d

dt
δσ0(t) = − 2

[
α + α′ − β + 3 βΨst

0

]
δσ0

− 2
[
α′ + βΨst

0

]
δσAB (24)

d

dt
δσAB(t) = − 2

[
α + α′ − β + 3 βΨst

0

]
δσAB

− 2
[
α′ + βΨst

0

]
δσ0. (25)

Clearly, δσst
0 = δσst

AB ≡ 0. After some algebraic steps we
obtain

δσ0(t) 	 δσ0(0) exp
[
−2[α + 2βΨst

0 − β] t
]

(26)

δσAB(t) 	 δσAB(0) exp
[
−2[α + 2βΨst

0 − β] t
]
. (27)

These results indicate that, for the symmetrical case, the
typical relaxation time is given by

τrelax =
1
2
[α + 2βΨst

0 − β]−1. (28)

3.2 Beyond the symmetric case

Let us call α0, α′
0 and β0 the parameter’s values corre-

sponding to the symmetric case. We consider now the fol-
lowing cases where we vary the parameters

β1 = β0, β2 = β0 + ∆β,

α1 = α0, α3 = α0 + ∆α,

α2 = α′
0, α4 = α′

0 + ∆α′.

We will vary only one of these parameters, while keeping
the rest fixed. In the following section we present the re-
sults (mainly numerical) corresponding to those different
cases.

4 Results

As indicated above, the macroscopic equations (Eqs. (6)
and (7)) have a unique attractor, indicating that it is ade-
quate to apply van Kampen’s expansion approach. In this
section we will present some results corresponding to sym-
metric and asymmetric situations, that show some typical
behavior to be expected from the model and the approxi-
mation method. In what follows, all parameters are mea-
sured in arbitrary units.

In Figure 1 we show the evolution of ΨA(t) and ΨB(t),
the macroscopic solutions, indicating some trajectories to-
wards the attractor: (a) for a symmetric, and (b) an asym-
metric case. It is worth recalling that ΨA and ΨB are the
density of supporters of party A and party B, respectively.
During the evolution towards the attractor, starting from
arbitrary initial conditions, we observe the possibility of a
marked initial increase of the macroscopic density for one
of the parties, follow by a marked reduction, or other sit-
uations showing only a decrease of an initial high density.
Such cases indicate the need of taking with care the results
of surveys and polls during, say, an electoral process. It is
possible that an impressive initial increase in the support
of a party can be followed for an also impressive decay of
such a support.

We remark that, due to the symmetry of the problem,
it is equivalent to varying the set of parameters (α3, α4, β2)
or the set (α1, α2, β1). Also worth remarking is that in
both panels of Figure 1 the sum of ΨA and ΨB is always
ΨA + ΨB < 1, so verifying that there is always a finite
fraction of undecided agents.

In Figure 2 we depict the dependence of the stationary
macroscopic solutions on different parameters of the sys-
tem. In Figure 2a the dependence on α3 is represented. It
is apparent that for α3 < α1, we have Ψst

B < Ψst
A , while for

α3 > α1, we find the inverse situation. Clearly, Ψst
B = Ψst

A
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Fig. 1. Evolution of the macroscopic solutions (Eqs. (6, 7)). Case (a) corresponds to trajectories towards a symmetric solution
(i.e. with Ψst

A = Ψst
B ), with parameters α1 = α3 = 1, α2 = α4 = 3, and β1 = β2 = 2. Case (b) corresponds to trajectories towards

an asymmetric solution (i.e. with Ψst
A �= Ψst

B ), with parameters α1 = 1, α3 = 5, α2 = α4 = 3, and β1 = β2 = 2.

Fig. 2. Dependence of the stationary macroscopic solutions on different system parameters: (a) on α3, the rest of parameters
are α1 = α2 = α4 = 1, and β1 = β2 = 1; (b) on α4, the rest of parameters are α1 = α2 = α3 = 1, and β1 = β2 = 1; (c) on β2;
the rest of parameters are α1 = α2 = α3 = α4 = 1, and β1 = 1. In all three cases, the continuous line corresponds to Ψst

A while
Ψst

B is indicated by the dotted line.

when α3 = 1(= α1), as it corresponds to the symmetric
case. Similarly, in Figures 2b and 2c we see the dependence
of the stationary macroscopic solutions on the parameters
α4 and β2, respectively. Also in these cases we observe
similar behavior as in the previous one, when varying the
indicated parameters. The parameters α3 or α4 (and sim-
ilarly for α1 or α2) correspond to spontaneous changes of
opinion, and may be related to a kind of social tempera-
ture [2,23,24]. However, also β1 and β2, that correspond
to convincing capacities, are affected by such a temper-
ature. So, the variation of these parameters in Figure 2
correspond to changes in the social temperature, changes
that could be attributed, in a period of time preceding an
election, to an increase in the level of discussions as well
as the amount of propaganda.

In Figure 3 we depict the dependence of the stationary
correlation functions for the fluctuations σi (with i = 1, 2,
corresponding to the projection of σA,B,AB on the princi-
pal axes), on different systems’ parameters. In Figure 3a
the dependence on α3 is represented, and similarly in Fig-
ures 3b and 3c, the dependence on the parameters α4 and
β2, respectively. We observe that, as the parameters are
varied (that, in the case of α3 and α4, and as indicated
above, could be associated to a variation of the social tem-
perature) a tendency inversion could arise. This indicates

that the dispersion of the probability distribution could
change with a variation of the social temperature.

Figure 4 shows the stationary (Gaussian) probability
distribution (pdf) Π(ξA, ξB)st projected on the original
(NA, NB) plane. We show three cases: on the left a sym-
metrical case, the central one corresponds to an asymmet-
rical situation with a population of N = 100, and on the
right the same asymmetrical situation but with a popula-
tion of N = 1000. This last case clearly shows the influence
of the population number in reducing the dispersion (as
the population increases). We can use this pdf in order
to estimate the probability pi (i = A, B), of winning for
one or the other party. It corresponds to the volume of
the distribution remaining above, or below, the bisectrix
NA/N = NB/N. In the symmetrical case, as is obvious,
we obtain pA = pB = 0.5 (or 50%), while in the asymmet-
rical case we found pB = 0.257 (or 25.7%) and pB = 0.015
(or 1.5%) for N = 100 and N = 1000, respectively. These
results indicate that, for an asymmetrical situation like
the one indicated here, we have a non zero probability
that the minority party could, due to a fluctuation during
the voting day, win a close election. However, in agreement
with intuition, as far as N � 1, and the stationary macro-
scopic solution departs from the symmetric case, such a
probability pi reduces proportionally to N−1 [26].
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Fig. 3. Dependence of the stationary correlation functions σi (with i = 1, 2) corresponding to the projection of σA,B,AB

on the principal axes, on different parameters of the system: (a) on α3, the other parameters are α1 = α2 = α3 = 1, and
β1 = β2 = 1; (b) on α4, the other parameters are α1 = α2 = α3 = 1, and β1 = β2 = 1; (c) on β2, the other parameters are
α1 = α2 = α3 = α4 = 1, and β1 = 1.

Fig. 4. Stationary, Gaussian, probability distribution Π(ξA, ξB)st projected on the original (NA, NB) plane. On the let we have
a symmetrical case with α1 = α3 = 2, α2 = α4 = 1, β1 = β2 = 2, and the population is N = 100. The central plot shows an
asymmetrical case, with α1 = 2 and α3 = 2.5, while α2 = α4 = 1, β1 = β2 = 2, and the population is N = 100. On the right we
have the same asymmetrical case as before, but now N = 1000, showing the dispersion’s reduction of the Gaussian distribution.

In Figure 5, on the left, we show a typical result for
the time evolution of the macroscopic solution towards
an asymmetric stationary case. In the same figure, in the
central part we find the associated time evolution of the
correlation functions for the fluctuations, σi (with i = 1, 2)
corresponding to the projection of σA,B,AB on the princi-
pal axes, while on the right we show the evolution of the
angle between the principal axes and the figure axes. The
temporal reentrance effect that has been observed in other
studies exploiting the van Kampen’s approach [25,27] is
apparent. This is again a warning, indicating the need to
take with some care the results of surveys and polls during
an electoral process.

In Figure 6 we depict the dependence of the dominant
(or relevant) relaxation time, that is the slowest of the
three relaxation times, on different parameters of the sys-
tem. On the left, we show a symmetrical case where the
different lines represent the dependence on variations of:
µ = α1 = α3 indicated by a continuous line; µ = α2 = α4

indicated by dotted line; µ = β1 = β2 indicated by dashed
line. The strong dependence of the relaxation time on
α = α1 = α3 is apparent (in order to be represented in
the same scale, the other two cases are multiplied by 3 or
10, respectively). This means that changes in the social
temperature that, as discussed before, induce changes in

α(=α1 = α3), could significatively change the dominant
relaxation time. On the right we show an asymmetrical
case where, as before, the different lines represent the de-
pendence respect to variation of: α1, indicated by a contin-
uous line; α2, indicated by a dotted line; and β1, indicated
by dashed line. It is worth remarking that, when all the
the parameters (α1, α2 and β1) are equal to 1, we see that
the relaxation time is the same. This is shown in the inset
on the left figure. In the asymmetrical case, the behavior
is of the same order for the variation of the three param-
eters. However, the comment about the effect of changes
in the social temperature remains valid.

5 Conclusions

We have studied a simple opinion formation model (that is
a toy model), analogous to the one studied in [22]. It con-
sists of two parties, A and B, and an intermediate group
I, that we call undecided agents. It was assumed that the
supporters of parties A and B do not interact among them,
but only through their interaction with the group I, con-
vincing its members through a mean-field treatment; while
members of I are not able to convince those of A or B,
because they do not posses a proper opinion, but instead
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Fig. 5. On the left, we have the time evolution of the macroscopic solutions ΨA(t) and ΨB(t). The parameter values are α1 = 1,
α3 = 5, α2 = α4 = 3, β1 = β2 = 2. The stars indicate the position where σ1 and σ2 attain their maximum, as seen in the central
panel. Central part, time evolution of the correlation functions σi (with i = 1, 2) corresponding to the projection of σA,B,AB on
the principal axes. On the right, the angle between the principal axes and the figure axes. The parameters are α1 = 1, α3 = 5,
α2 = α4 = 3, and β1 = β2 = 2.

Fig. 6. Dependence of the dominant relaxation time on different system parameters. On the left, symmetrical case: continuous
line varying µ = α1 = α3, dotted line varying µ = α2 = α4, and dashed line varying µ = β1 = β2. In order to compare all three,
the dotted line was multiplied by 3, while the dashed one by 10. The inset shows, now on the same scale, the crossing of the
lines at the point where all the parameters are equal to 1. On the right, asymmetrical case: continuous line varying α1, dotted
line varying α2, and dashed line varying β1. In all cases, the parameters that remain constant are all equal to 1.

we consider a nonzero probability of a spontaneous change
of opinion from I to the other two parties and viceversa.
It is this possibility of spontaneous change of opinion that
inhibits the possibility of reaching a consensus, and yields
that each party has some statistical density of supporters,
while it remains a statistical stationary number of unde-
cided agents.

However, it is worth to comment on the effect of in-
cluding a direct interaction between both parties A and B.
As long as the direct interaction parameter remains small,
the monostability will persist, and the analysis, with small
variations will remain valid. However, as the interaction
parameter overcomes some threshold value, a transition
towards a bistability situation arise, invalidating the ex-
ploitation of the van Kampen’s Ω-expansion approach.

The results indicate that one needs to take with care
the results of social surveys and polls in the months pre-
ceding an electoral process. As we have found, it is possi-
ble that an impressive initial increase in the support of a

party can be followed for an also impressive decay of such
a support. The dependence of the macroscopic solutions
as well as the correlation of the fluctuations on the model
parameters, particularly on the variation in α3, α4 or β2

(that, due to the symmetry of the model are similar to
varying α1, α2 or β1) was also analyzed. As the parame-
ters αi correspond to spontaneous change of opinion, or βi

to a convincing capacity, it is possible to assume that they
have an “activation-like structure”, we can argue that they
could be related to changes in the social temperature, and
that such a temperature could be varied, for instance, in
a period near elections when the level of discussion as well
as the amount of propaganda increases. Also analyzing the
temporal behavior of the fluctuations one observes some
“tendency inversion”, indicating that an initial increase of
the dispersion could be reduced as time elapses.

We have also analyzed the relaxation of small pertur-
bations near the stationary state, and the dependence of
the typical relaxation times on the system parameters was
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obtained. This could shed some light on the social response
to small perturbations like an increase of propaganda, or
dissemination of information about some “negative” as-
pects of a candidate, etc. However, such an analysis is only
valid near the macroscopic stationary state, but looses its
validity for a very large perturbation. For instance, a sit-
uation like the one lived in Spain during the last elec-
tions (the terrorist attack in Madrid on March 11, 2003,
just four days before the election day), clearly was a very
large perturbation that cannot be described by this linear
response-like approach.

Finally, we can conclude that the inclusion of the group
of undecided agents is essential to explain the fluctuations
in the possible outcomes of a poll, as it is to be expected,
and that the polarization of those agents to one of the
positions A or B is strongly dependent on the social tem-
perature during the immediate time preceding the voting.
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